3.1144 \(\int \frac {a+a \cos (c+d x)+2 b \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx\)

Optimal. Leaf size=256 \[ \frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {4 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{d}-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d} \]

[Out]

2*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)-2*(a-b)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+
b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(
a-b))^(1/2)/a/d+4*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2
))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.50, antiderivative size = 256, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {3061, 2998, 2816, 2994} \[ \frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {4 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{d}-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x] + 2*b*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]),x]

[Out]

(-2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]]
)], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) + (4*
Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b
)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d + (2*Sqrt[a + b*Cos[c
 + d*x]]*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rule 2998

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3061

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> -Simp[(C*Cos[e + f*x]*Sqrt[c + d*Sin[e
+ f*x]])/(d*f*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[1/(2*d), Int[(1*Simp[2*a*A*d - C*(b*c - a*d) - 2*(a*c*C - d
*(A*b + a*B))*Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d))*Sin[e + f*x]^2, x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c
+ d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
&& NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {a+a \cos (c+d x)+2 b \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx &=\frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {\int \frac {-2 a b+2 a b \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{2 b}\\ &=\frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-a \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx+(2 a) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx\\ &=-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d}+\frac {4 \sqrt {a+b} \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 4.74, size = 160, normalized size = 0.62 \[ \frac {\sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \sqrt {a+b \cos (c+d x)} \left (\frac {2 E\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )}{\sqrt {\frac {a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}}}+\frac {\left (\sin \left (\frac {3}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right ) \sec \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}}}\right )}{d \sqrt {\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x] + 2*b*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]),x]

[Out]

(Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[a + b*Cos[c + d*x]]*((2*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a +
b)/(a + b)])/Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] + (Sec[(c + d*x)/2]*(-Sin[(c + d*x)/2] +
Sin[(3*(c + d*x))/2]))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]))/(d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 0.46, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (2 \, b \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right ) + a\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{b \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c)+2*b*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((2*b*cos(d*x + c)^2 + a*cos(d*x + c) + a)*sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(b*cos(d*x + c)
^2 + a*cos(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {2 \, b \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right ) + a}{\sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c)+2*b*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((2*b*cos(d*x + c)^2 + a*cos(d*x + c) + a)/(sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

maple [B]  time = 0.41, size = 919, normalized size = 3.59 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c)+2*cos(d*x+c)^2*b)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x)

[Out]

-2/d*((cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+b*cos(d
*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*cos(d*x+c)^2*sin(d*x+c)*a+2*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*EllipticF((-1
+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*cos(d*x+c)*sin(d*x
+c)*a-sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*
((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*cos(d*x+c)^2*a+sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+
b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c
)^2*a+sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1
+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^2*b+(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*EllipticF((-1+c
os(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*a-(cos(d*
x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),
(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*a+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c
))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*a+(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a
-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*b+cos(d*x+c)^4*b+a*cos(d*x+c)^3-cos(d*x+c)^3*b-a*cos(d*x+c)^2)/(a+b*co
s(d*x+c))^(1/2)/sin(d*x+c)/cos(d*x+c)^(3/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {2 \, b \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right ) + a}{\sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c)+2*b*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((2*b*cos(d*x + c)^2 + a*cos(d*x + c) + a)/(sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {2\,b\,{\cos \left (c+d\,x\right )}^2+a\,\cos \left (c+d\,x\right )+a}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*cos(c + d*x) + 2*b*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))^(1/2)),x)

[Out]

int((a + a*cos(c + d*x) + 2*b*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a \cos {\left (c + d x \right )} + a + 2 b \cos ^{2}{\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}} \sqrt {\cos {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c)+2*b*cos(d*x+c)**2)/cos(d*x+c)**(1/2)/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Integral((a*cos(c + d*x) + a + 2*b*cos(c + d*x)**2)/(sqrt(a + b*cos(c + d*x))*sqrt(cos(c + d*x))), x)

________________________________________________________________________________________